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AbsImcL W present a discussion of the dynamical mrrelalion functions for Heisenberg 
magnets wilh a weak easy-plane anisotropy for temperatures just above the Kosterlitz- 
Thouless phase lransition. Compared lo the XYmcde l  we find here vor t im which 
have in addilion to the well known in-plane stmcture a lacaliied our-of-plane profile 
around their centre. For lhe ferromagnetic case this structure produces an effective 
magnetic field which acts as a gyro fonce on the other vortices. Assuming a dilule gas 
of weakly interacting vortices, we find analytic expressions for the vortex contribution 
to the dynamical mrrelalion funclions lhse rerulls are compared (i) wilh numerical 
Monte Carlomolecular dynamim simulations on a lWxl00 quare lauice allowing us to 
determine values for the voner "e la t ion lenglh and average vortex velocity e and 
(ii) wilh experimenls performed an different quasi-lwodimensional magnetic materials. 
We find lhat our WO  calculation^ are in g w d  agreemenl wilh the mperimenls and the 
Kostelliu-Thoulw lheory an lwodimensional X Y  magnets as tar as Static propenies 
are concerned. Data obtained by filling the width of the ~entral peak in appmpriate 
dynamic structure funclions, which reflect the dynamics, show a significant deviation 
f" lhe results of our dculalions. suggesting that here the parameters of the free 
vortex-gas maIz  are renormalized by additional interactions with vonex pairs (clusters) 
andlor in-plane Spin waves a1 higher q-values. 

1. Intmduction 

During the last few years an increasing number of quasi-two-dimensional (ZD) 
magnetic materials have been found (a good ovelview Over these materials is 
presented in the book by de Jongh (1990)) such as (i) layered magnets, like &CuF4 
(Hirakawa et a1 1982), (CH,NH,),CuCI, (Ain 1987) and BaM,(XO,), with M = CO, 
Ni, ... and X = As, P, ... (Regnault ef a1 1989, Regnault and Rossat-Mignot 1990, 
Gaveau er a1 1991); (ii) CoCI, graphite intercalation compounds (Wiesler ef a1 1989); 
(iii) magnetic lipid layers, like Mn(C,,H,,O,), (Pomerantz 1984, Head et a1 1988); 
here even monolayers can be produced which are literally ZD magnetic systems. These 
various materials exhibit not only spatially extended modes (spin waves) as excitations, 
but also spatially local structures, such as vortices, domain walls, etc, characteristic of 
highly non-linear systems. 

Most of the above mentioned materials can be well described in a first 
approximation by the anisotropic Heisenberg Hamiltonian 
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H =  

where ( i , j )  label nearest-neighbour sites. J > 0 and J < 0 correspond to 
ferromagnetic (FM) and antiferromagnetic (AFM) exchange couplings, respectively. In 
this paper we will focus only on X Y  or ‘easy-plane’ symmetry with a corresponding 
X E [0,1[. The non-linear excitations in this type of model are vortices which lead to 
a well known phase transition (Kosterlitz and Thouless 1973) at a temperature Tm, 
where bound vortex pairs start to dissociate. Depending on the anisotropy parameter 
X there exist two different types of vortices (Volkel el al 1991a): for X < A, = 0.72 
the static vortex structure is purely in-plane (hence, we call this type of vortex an 
‘in-plane vortex’ (IPV)); however, for X > A, a well localized out-of-plane structure 
develops (‘out-of-plane vortex’ (oPv)). 
As was shown by Volkel et al (1991a) the dynamics of single vortices of the two 

types are quite different: (i) due to their out-of-plane structure extending over a few 
lattice sites the OPVS ‘feel’ the discreteness of the underlying lattice much less than 
the lPVs and therefore move much more easily-this is true for both FM and AFM 
vortices; (ii) the out-of-plane structure of the FM OPVS acts like an effective magnetic 
field on the neighbouring vortices which leads to an additional gyro force between 
them-this is only true for FM vortices, because a (perfectly) AFM ordered structure 
does not yield an effective net magnetic field. 

In previous papers (Mertens et al 1989, Gouvi% et a1 1989, Volkel et al 1991b) 
we have investigated the contributions of the free vortices just above Tm to the dy- 
namical correlation functions for the small-X regime for FM and AFM models. There 
we showed that an ansa12 of a dilute gas of weakly interacting vortices yields central 
peaks (CP) which describe the results from numerical Monte Carlo-molecular dynam- 
ics (MC-MD) simulations quite well. However, most of the above mentioned materials 
contain only a small anisotropy, i.e. we expect them to have OPVS as non-linear excita- 
tions. In this paper we will extend our calculations to the large-X regime and discuss 
the dynamical correlation functions just above Tv from both analytical calculations 
and numerical simulations. A short comparison wrth experiments is also included. 

The paper is organized as follows: in section 2 we will discuss the FM anisotropic 
Heisenberg model first by reviewing some analytic results, second by “paring these 
results with the numerical simulations and third by comparing with experiments. 
Section 3 contains the same for the AFM case. Section 4 briefly summarizes the 
results. 

2. Ferromagnets 

21. Some analytic resulls 

’Ib perform the analytic calculations we worked in the continuum limit using the 
angular fields Q ( T )  and O(T) ,  which are related to the spin field S ( T )  by 

S(r) = (cos @ ( T )  cos e( r),sin @ ( r )  cos @(r),  sin O ( T ) ) .  (2.1) 

For small temperatures the dynamics of (1.1) can be well described within a 
linear spin-wave theory (Holstein and Primakoff 1940). n e s e  linear excitations are 
characterized by the dispersion relation 

w ( d  = 4~sJ(1  - -dd)(l- A d d )  (2.2) 
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at T = 0 with y ( q )  = $(msq, + cosq,)  on a square lattice with lattice spacing 
a = 1. For the out-of-plane fluctuations this description is quite good even for 
larger temperatures, while in the plane the spin stiffness constant decreases to Zero 
discontinuously at TKT (Pokrovs!q and Uimin 1974, Nelson and Kosterlitz 1977). 

Due to the easy-plane symmetry of our model there exist also non-linear 
excitations, namely vortices. For X > A,, i.e. a small anisotropy, the single static 
vortex shape is given by 

= i a rc tan(y /z)  = f l , f 2 ,  ... 
(2.31 

which has a well localized out-of-plane structure around its centre with width 
rv = $,/-, p denotes the sign of the r-conponents of the out-of-plane 
shape. This static structure is slightly distorted when the vortex is moving with finite 
velocity (Gouda et al 1989). 

Assuming a dilute gas of weakly interacting vortices just above Tm we can 
calculate their contributions to the dynamical correlation functions S""(q, w), 
a = z , y , z ,  which are mainly determined by the static structure (2.3). Considering 
length scales r >> T". on which the in-plane structure acts like a sign function on the 
spins it is passing, we obtain for the in-plane correlations the same squared Lorentzian 
as in the case where X < A, (Mertens er a1 1989): 

(2.4) 
2 s=2(q,w) = (1 /2X2)Pr3/  { w z  + rz[i + ( P F ) ~ I )  

with width 

and integrated intensity 

r*(q)  = (w)/ [ I  + ( q ~ ) Z 1 3 / 2 .  (2.6) 

Here y = f i I l / 2 <  and the correlation length E and the average vortex velocity Il 
are the WO free parameters of the wrtex-gas approach. 

For the out-of-plane correlation function we obtain a Gaussian CP 

s z * ( q , w )  = (nY/6/;;qiL) ex~[- (w/s1 l )~ l{ l f (q)1~ + f ( f i / [4(1-  X)JsI)'l (2.7) 

where 

is the form factor of the static out-of-plane shape. This lf(q)I'-term in S z z ( q , w )  
is new for X > A, and dominates the vortex contributions to the out-of-plane 
correlations, while the velocity-dependent part of (2.7) is the same as in the case 
with A < A,. n, E (2[)-' is the density of free vortices (Bishop and Reppy 1978). 
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22. Comparison with MC-MD simulaiions 

The results discussed above will now be compared to a combined Mc-MD simulation 
on a 100x100 square lattice with anisotropy parameter X = 0.8 (> Ac). The MC 
algorithm is used to bring the system for a given temperature into thermal equilibrium. 
From these configurations we start a fourth-order Runge-Kutta method to integrate 
the equations of motion from which we can derive the dynamical correlation functions 
by Fourier transformation of the spin-spin mrelations 

A R Vdlkel el a1 

A more detailed description of the simulation procedure is given by -in and Bishop 

For T < TKT we observe only a single peak in the correlation functions which 
can be well identified .with spin waves. Figure 5 in the paper of Mertens er 
al (1989) shows data obtained from the simulation for various temperatures. A 
crossover from XY- e to isotropic Heisenberg-type behaviour can be clearly seen 
at qc 2 0 . 2 ~  2 ?- 2( 1 - A)  (cf Hirakawa er a1 1982). The bound vortex pairs cause 
only a renormalization of the spin-wave peaks (Kosterlitz and Thouless 1973, G t e  
and Griffin 1986). 

(1%). 
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Figure 1. Om-of-plane mrrelation function Szz for (he FM model at T = 0.85. The 
dashed line b an slimale of the vortex CP. 

Above TKT there is still a spin-wave peak present in S**(q,w).  But now there is 
additional weight around w E 0 for small q-values (figure 1). These new contributions 
coincide with our expectations from the vortex-gas approach. However, from the 
simulation we obselve no clear picture of this cp bemuse of the strong overlap with 
the spin waves. 

On the other hand the stiffness wnstant of the in-plane spin waves Suffers 
a sudden decrease to zero above the Kosterlitz-Thouless transition temperature. 
Therefore we find only a single cp above Tm in the planar correlations which can 
be well described by our free vortex-gas approach, i.e. this peak can be fitted very 
well to a squared Lorentzian over quite a large temperature range. An analysis 
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lhbk L Fitted data for the FM case. 6: "elation length obtained L y  fitting the width. 
i: M R ~  average velocity obtained by fitting the width. f i n :  "elation length obtained 
by fitting the integrated intensity. i ~ :  vortex average velocity obtained from (2.11) 
using (in,. A,: amplitude obtained by fitting the integrated intensity. At = &/4n: 
theoretical amplitude of the integrated intensity. 

T Ew 6.t CH AintIAt AP 
0.82 1254 0.49 4.69 0.28 0.31 0.70 
0.83 10.19 0.44 3.63 0.33 0.35 0.70 
0.85 660 0.39 280 0.40 0.40 0.60 
0.87 5.62 0.38 2.79 0.40 0.37 0.63 
0.90 9.53 0.47 2.03 0.49 0.46 0.51 
0.95 4.32 0.43 1.72 0.54 0.45 0.40 

of the width obtained in this way and the integrated intensity using equation (2.5) 
and equation (2.6) gives us values for the parameters and 6 which are listed in 
table 1. We find, as in the previous cases (Mertens er af 1989, Volkel er a1 1991b), 
a difference in the absolute values of the correlation length, depending on whether 
it was fitted from the width (&) or from the intensity In addition, there is a 
quantitative difference for large temperatures: fin, agrees wth  the Kosterlitz-Thouless 
(KT) formula (Kosterlitz and Thouless 1973), 

(2.10) 

quite well Over the whole temperature range under consideration with TKT = 0.79 
and b E 0.28 (this b-value is very small compared to the prediction of KT. However, 
their result is only valid at T = TKT, while for larger temperatures this parameter 
is slightly 2'-dependent (Heinecamp and l'elcovitz 1985) and only about 0.5 even for 
X = 0), but we find an agreement of tw with (2.10) only Cor 0.82<,T<0.87 (with 
b = 0.59); above T rs 0.87 Cw jumps to a larger value. This change in E, for a 
temperature above TKT is expected (Hirakawa et al 1982) and indicates a crossover 
from the XY-like to a more isotropic Heisenberg behaviour of the system. This 
crossover can also be seen in the average vortex velocity .iL which suddenly jumps to 
larger values above T 0.87. In the range 0.82 <, T <  0.87 the fitted 6 is decreasing 
with increasing temperature (table 1). The only available theory we can compare 
these values with is from Huber (1982) who obtained for the wrtex velocity 

(2.11) 

by assuming a dilute gas of freely moving vortices which interact via an attractive or 
repulsive force 

F a G I G z ( ~ l  - - TA' (2.12) 

and the gyro force (caused by the static out-of-plane shape) 

Gcxepe, .  (2.13) 

If we insert tint into equation (2.11) we obtain values for 6 which reproduce the fitted 
data quite well for 0.85 5 T <, 0.87, but near the phase transition C is decreasing which 
is just the opposite behaviour to that observed in the simulation data. 

From table 1 we also see that the ratio of the simulated amplitude of P ( q )  is 
only about 0.4 times the expected value of t2/47r. So far we have considered only 
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the freely moving vortices in our calculations of the in-plane correlation function. A 
straightfonvard extension is to include the out-of-plane fluctuations in a perturbative 
way (appendix A). The first-order corrections only renormalize the amplitude of the 
CP 

S:&(q,w) = S Z 2 ( q , w ) { l  - 7r/(202[1 + (6/4(1+ X))lnF] 

and correspondingly the integrated intensity P ( q )  = s_'," dw S"'(q,w). The first 
deviation from the old result on the right-hand side of (2.14) k due to the out-of- 
plane vortex shape and the second one is due to harmonic out-of-plane spin waves; 
K ( X )  is the complete elliptic integral of the first kind. These corrections can only 
partly account for the decrease of the amplitude (cf table l), however, harmonic spin 
waves are a crude approximation for temperatures above 'Im (Menezes er a1 1991). 
The second-order perturbations also change the width of the IT, but their influence 
is much too weak to change any of the parameters, which we obtained by using the 
unperturbed analytical results, in such a way that the data fitted from the width and 
intensity become more consistent (and even a more advanced spin-wave technique 
does not seem to improve this result). 

We therefore conclude that because of the presence of vortex pairs (and clusters) 
and in-plane spin waves at higher q-values we obtain not the parameters due to our 
vortex-gas amatz, but rather properly renormalized values of E and G. 

A R Vokel et al 

- ( T / 2 n ) K ( X ) }  = S Z Z ( q , w ) A ,  (2 14) 

0.0 0. I 0.2 0.3 
'I"/" 

0.0 0.1 0.2 0.3 
qa/n 

Figure I Width P ( q )  of the in-plane mrrelation 
function of the FM model at T = 0.8% f: data 
from fitting S""; solid line: fil far small p 10 (2.5). 

FIgure3. lnteglated intensity I * ( q )  o f t h e  in-plane 
comelalion function of rhe FM model at T = 0.83; 
+: data from filling SE; solid line: fil for Small 
q IO (2.6). 

If we examine the width P ( q )  we also find a well-defined crossover in qspace 
from the XY-like to the isotropic Heisenberg behaviour (figure 2). Below a certain 
q-value we can fit the width very well with the function (2.5), while above this wave 
vector it has a much steeper slope. This 'critical' q is a little smaller than that for 
the spin waves. The crossover also occurs in the data of the integrated intensity. 
However, here the change in the functional behaviour of P ( q )  is much smoother 
and hard to see by eye (figure 3) -but  a fit of these data with equation (2.6) shows 
a change in the fit parameter, if we include data at higher q-values. 
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23. Comparison with erperiments 

A good representative of 2~ FMS with easy-plane symmetry is &CuF, (Hirakawa 
et a1 1982). Here the magnetic planes interact via a small exchange mupling 
J’ R 6.7 x J which bewmes dominant at low temperatures leading to 3D 
ordering below a critical T, = 6.25 K The KT phase transition occurs just below 
T,. However, there is still a temperature range above Tc where the system displays 
mainly XY-like behaviour, although the easy-plane anisotropy is very small for this 
material (1 - X = 0.01 and X = 1 denotes the isotropic limit). Regnault et a1 
(1989) performed a neutron-scattering study of the static properties of K,CuF, in the 
vicinity of the phase transition and found a good agreement with the KT theory just 
above T,. The crossover to Botropic behaviour occurs at a temperature T+ where 
[(Tc.) Z (1 - A)-’/’. In our model this gives a [(Tci) R 2.24 corresponding to a 
temperature T,, 20.87, if we wmpare with Fh, (which makes sense, because this was 
fitted from the integrated intensity which is also a static quantity). 

Wiesler et a1 (1989) performed measurements of the dynamical correlation 
function on CoCI, intercalated graphite which is another example of a ZD FM with 
easy-plane symmetry. The anisotropy here is of intermediate sue (1 - X = 0.44) 
and we expect that only fast moving wrtices develop the well localized out-of- 
plane structure (2.3). On the other hand this is the only material on which the 
dynamical wrrelation function was explicitly measured. Wiesler ef ul (1989) wuld fit 
the measured CPS well to a squared Larentzian above TKT (= 9.6 K). However, for 
temperatures just above the phase transition they found an additional contribution 
to the CP which is sharp in w-space, but broad in q-space, and which they suggest is 
a result of the pinning of vortices by defects or different spin diffusion time scales. 
If we translate their system parameters into our units we find that the temperature 
regime from 0.82 to 0.99, for which they observe the additional cpcontribution, is 
just the range where we expect the XY-like behaviour, while at T,, zz 0.99 we obtain 
ti, = 1.50 (1 - A)-’/* for X = 0.56 by extrapolating our data. This agrees very 
well with the crossover condition to isotropic behaviour suggested by Hirakawa et a1 
(1982). Because we also observe these deviations from our vortex-gas results in the 
numerical simulations, where we have no defects, we conclude that the pinning effects 
do not alone explain this modified cp. 

3. Antiferromagnets 

The analytic approach for calculating the vortex contributions to the dynamical 
correlation functions in the AFM model is similar to the FM case (Gouvsa et ul 1989, 
Volkel et ol 1991b). In contrast, here the static structure is (on a local scale) perfectly 
AFM ordered, thus leading to peaks centred around q = (T, n), while the deviations 
of this structure due to a finite velocity are (on a local scale) FM ordered and therefore 
give contributions near q = (0,O). Using an equivalent vortex-gas ansutz as explained 
in the last section we end up with the same squared Larentzian CP for the in-plane 
wrrelation function (cf equation (2.4)), but here centred at the AFM Bragg point. 
The out-of-plane correlations also show a similar form as in (2.7). From the velocity 
induced icomponents we obtain a contribution a ( i~/[4(1 + X)Jq])’. The main 
contribution, however, wmes from the static out-of-plane structure with the same 
form factor f(q) as in (2.8). but now centred at q = ( T ,  r). Because both parts are 
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0.0 0. I 0 2  0.3 
sa /n  q.,l/iT 

Fkum 4 Spin-wave dispersion wz(q)  along the (q,q) Pigure 5. Width P ( q )  01 the in-plane 
direction for X = 0.8: +, jl: simulation data obtained mrrelation function of the AFM model wilh 
from the in-plane mrrelation function for T = 0.3 and X = 0.8 a i  T = 0.85; +: data from fitting 
T = 0.5, respectively; solid line: linear spin-wave theory SI'; solid line: fit for small q to (2.5). 
for T = 0. The data are plotied in an mended wne 
scheme to emphasize the fact that one observes only a 
single spin-wave peak in lhe in-plane mrrelation function 
(1.4) for a gjven q-value. m e  dala from the out-of- 
plane mmlations show the same msull within numerical 
accuracy, but following the wldispersion. 

multiplied by the Same Gaussian function, the  width of which is increasing with q, the 
combined peak has its maximum intensity, but also its maximum width, at q = ( T ?  T ) .  

Below TW (e 0.79) we observe only spin waves, and, because of the symmetry 
of the two dispersion branches (Volkel et a1 1991b) 

W 1 . d d  = 4 ~ s J ( 1 ~  Y ( q ) ) ( l *  wd), (33.1) 

we find only one spin-wave peak in each of the two different correlation functions 
(figure 4). Above TW there is again a strong overlap of spin-wave and vortex 
contributions in Sz' (q,w) .  In S r 2 ( q , u ) ,  due to the sudden softening of the spin 
stiffness constant, only a CP at q = ( n ,  n) can be found+. Fitting this peak to our 
theoretical prediction provides us with d u e s  for the correlation length and the vortex 
average velocity (table 2). Again the values of tint for various temperatures show no 
significant deviations from the KT prediction (2 .10) ,  while there seems to be a 'soft' 
change in the functional form of E,(T) at T,, 50.9, where tint(Tcl)>2.24 S (1 - 
A)-'/*. We also observe no sudden deviation of the fitted width from our theory for a 
certain q, as happened in the FM case (figure 5). This softening of the two crossovers 

t mere is alsn a cp around q = (0,  0) basically caused by the m a l l  motion-induced deviations from the 
Static in-plane stmclure, but this peak has a wry small intensily compared 10 the peak a1 q = (r, r) 
and is hard to investigate. 
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'Rbk 2 Filled data for the APM case. E.: "elation length oblaincd by filling the 
width. i: mnex average velocity obtained by fitting the width. fimt: "elation length 
obtained by fitting the integrated intensity. Ai",: amplitude obtained by filling the 
integrated intensity. A,  = j4n: theoretical amplilude of lhe integrated intensity. 

0.83 7.53 1.w 3.46 a39 
0.85 6.87 1.23 3.29 a38 
0.87 3.75 a93 291 0.37 
0.90 3.74 1.05 225 0.42 
1.00 2.26 0.93 1.56 0.52 

from XY-like to isotropic Heisenberg behaviour is probably caused by the presence 
of the additional spin-wave branch and consequent bigger fluctuations in space. 

As for the small-X case (Volkel et a1 1991b), we find quite a large vortex velocity 
(about twice as large as in the FM case) and this appears to be constant in the 
temperature range under consideration$. This possibly reflects the different dynamic 
behaviour of the AFM vortices compared to the FM ones. A microscopic theory for 6 
for the AFM is not available as far as we are  aware. 

A good candidate for a 2D easy-plane AFM is BaNi,(PO,),, which can be well 
described by the Hamiltonian (Regnault et al 1990) 

H = J S i .  S,  + DC(Sf)2 (3.2) 
(id i 

with J = Ill<-, D = 7.31<, and S = 1. Though here the XY-anisotropy is caused 
by an on-site interaction of the zcomponents of the spins we find the same dynamical 
behaviour as in the model described by (1.1). but with slightly modified parameters 
(appendix B); and for D > D, x 0.55 we again expect OVPS as non-linear excitations. 

Both neutron-scattering studies (Regnault et al 1989) and NMX experiments 
(Gaveau ef al 1991) on BaNi,(PO,), are presented. For the resonance experiment 
an external magnetic field was applied, but we do not expect it to change the vortex 
dynamics significantly as long as it is weak and is directed perpendicular to the easy- 
plane. The nuclear spin relaxation time TI is, after some aproximations, inversely 
proportional to Jdzq Sz"(q, wN), where wN is the nuclear Larmor frequency. This is 
small compared to the typical (electronic) spin fluctuations in this material and thus 

1 f TI m 1 f y = 2( f (fie). (3.3) 
After expressing [ and 6 by equations (2.10) and (2.11), respectively, the experimen- 
tal data are fitted ve'y well by (3.3) with b = 0.95. It  is interesting to note that here 
the Huber formula for the vortex average velocity seems to fit the data quite well, 
although it was obtained for the FM case where the additional gyro force between 
the vortices was present. On the other hand, in this case we have the external field 
which is applied perpendicular to the easy planes, thus causing the system to develop 
a net magnetization in the zdirection, with the magnitudes of the zamponents  of 
the spins depending on where the spins are located relative to the vortex centres. 

Neutron scattering was used to explicitly probe the dynamical correlation function 
S"'(q,w). Above TKT a CP was clearly detected. However, this was better fitted by 

t mese data were obtained by filling Ule width for 0 < q* < 0 . 1 ~ .  If we apand the fit to higher values 
of q * ,  then we obtain larger wlues for 8,  and for a fit in the range 0 < q* 5 0 . 1 7 ~  we find i P 2.0 
pblkel d al 1991b). 
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a Lorentzian rather than the squared Lorentzian (2.4). Wlth a second experiment, 
using the neutron-spin echo technique (Regnault et a/ 1989), the local, timedependent 
correlation function 

A R V t k l  et a1 

S?(r = 0, t )  0: exp( -yt) (3.4) 
was measured. The investigation of these data yielded two time scales corresponding 
to 2D and 3D fluctuations (as expected for temperatures just above the 3~ ordering). 
After separating the contributions of the 3D fluctuations, Regnault et a1 (1989) 
obtained quite large values for y which account for a vortex average velocity of 
1.5 ... 2.0& where ti corresponds to the simulation data of table 2 However, this 
method yields data integrated over the whole q space, including large values of q*, 
where our approach is no longer valid. If we use a larger q’-range for our fitting 
procedure we obtain values of E which are comparable to the results of Regnault et 
a1 (1989, see footnote t). 

Another approach to explain the spin dynamics of BaNi,(PO,), was made by 
Boucher et a/ (1992) in a recent paper. Those authors extended methods to the 
two-dimensional easy-plane Heisenberg AFM which were previously used for the one- 
dimensional AFM chain (Mikeska 1980, Maki 1981) and which can describe both a 
ballistic and a diffusive vortex motion. Boucher et a/ conclude that at small values 
of q* the vortex dynamics become more ballistic. This result is based (i) on the fact 
that they could fit the CP in S2”(q,w)  at small q* better with a Larentzian (rather 
than a squared Lorentzian) as expected from a diffusive vortex dynamics, and (ii) on 
the good agreement of the ‘diffusive vortex average velocity’ for small q’ and the 
‘ballistic vortex average velocity’ for larger q’, 

4. Conclusions 

In the present paper we have investigated the dynamical correlations in ZD Heisenberg 
magnets with weak easy-plane symmetry. In these systems there are, in addition 
to extended small-amplitude excitations (i.e. spin waves), also localized excitations 
(vortices) present which undergo a KT-like phase transition. We have focused our 
attention on the temperature range just above the transition temperature Tm. Here 
we have found CPs as contributions from the vortices to the dynamical correlation 
functions by using an ansafz of a dilute gas of weakly interacting vortices. 

A comparison of the FM model with MC-MD simulations shows that our 
phenomenological approach describes the static properties, e.g., the integrated 
intensity, quite well. However, the parameters E and ti fitted from the width 
of the in-plane cp (which reflects the dynamics of the system) show significant 
deviations from our expectations, i.e. tw > Fin,, though tW also fits to the KT formula 
(2.10), and ti is increasing with decreasing temperature (above ?“,)-this is just the 
opposite behaviour to that predicted by equation (2.11). A perturbative cahdation 
shows that the interactions of the out-of-plane fluctuations with the in-plane Vortex 
structure cannot explain these deviations. Our numerical results also agree with 
experimental results on K,CuF, and CoCI, intercalated graphite compounds. Thus a 
more advanced ansafz for the vortex dynamics, including, e.g., interactions of freely 
moving vortices with vortex pairs (clusters) and in-plane spin waves at higher 4- 
values, is necessary to properly describe the CPS in the dynamical correlation functions. 
However, from our fits of the numerical data to the present analytic results We Suspect 

’ 
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that this improved ansatz will lead only to a renormalization of the parameters E and 
C, rather than a change in the functional form of the CP in Szz(q,w).  

We find a similar behaviour in the AFM model. But here the vortex average 
velocity is much higher than in the FM case and roughly constant in the whole 
temperature range under consideration. This probably reflects the different dynamics 
in this system: (i) here the vortices interact only via the central force (212), while 
there is no additional gyro force as in the FM case; and (ii) there is a second spin-wave 
branch which results in extra interactions with the vortices. 

behaviour at a temperature T,, % (1 - A ) - I l 2  and at qc, % 0.167~ < + 2(1- A). 
These crossovers are much smoother in the AFM case due to the additional Spin-WaVe 
branch. In real systems there is usually also a small coupling between the magnetic 
planes present which leads to a 3~ ordering just above the KT phase aansition. X Y -  
like behaviour can therefore only be observed in a certain temperature range above 
the phase transition and this range. becomes smaller for weaker anisotropies. 

In both systems we observe a crossover from XY-like to isotropic Heisenber 
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Appendix A. 

lb include out-of-plane fluctuations in the calculations of the in-plane correlation 
function for the FM case we make the unsutz (cf Menezes et ul 1991) 

where the index v (s) denotes the vortex (spin-wave) part of the angle fields. From 
the in-plane vortex structure we still consider only the effect of spin flips, thus we 
can separate the @ from the 0 correlations. We therefore find for the dynamical 
in-plane correlation function 

P ( r , t )  = (cos@(r ,  t)cos@(r,t)cos@(O)cos @(o)) 
E ( c o S ~ ( T , t ) c o S ~ ( O ) ) ( C O S 0 " ( T , t ) c o S 0 , ( 0 ) C O S O ~ ( T , t ) c o S 0 ~ ( 0 )  

+sin 0 J r ,  1 )  sin 0 J O )  sin O,(r,t)sin 0,(0)). (-42) 

In a further approximation we also decouple the correlations of 0, and 0,. 
Moreover, we assume that 0 ( r )  << 1 which is always true for e,, but also for 0, for 
T >> T", and finally arrive at 

SzZ(r,t) G ( cos@(r , t ) cos@(O)){ I -  (et)-(@) 
+ ((03 + (03) +(03(03 + +((@3r,t)@t(o))2) (W 
+ :((o:(r,t)o:(o))*) + ( o ~ ( T ,  t)ot(o))(o:(r,t)oT(o)) + ... 1. 
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Appendix B. 

Using the same ansatz for the angle fields as proposed in an earlier pper  (Volkel 
a1 1991b) we derive similar equations of motion from equation (3.2) as for the model 
described by (1.1). With a proper renormalization of the length scale we obtain the 
same unitless differential equations leading us to the following vortex stmcture UP to 
first order in the velocity U 

@ ( r )  = 6 arctan(y/r) + QC 

A R V 6 k l  et a1 

s / 2  - c3r/rv r - 0  

with the vortex core radius r, = l/m. 
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